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1. Introduction

Type I strings and their close relatives have received a great deal of attention in the past

few years (see e.g. [1]-[7] for comprehensive reviews).

Although their systematization was already achieved in the early 90’s [8]-[16], including

the possibilities of minimally coupling R-R p-form potentials and reducing the rank of the

Chan-Paton group by turning on a quantized NS-NS antisymmetric tensor background [15,

16], the geometric description in terms of D-branes and Ω-planes [20, 21], pioneered in [22,

23] has definitely consecrated this framework as the most promising one to embed Particle

Physics in String Theory. Simple instances of chiral model based on toroidal orbifolds [24]-

[29] with or without intersecting branes [30]-[33], that are T-dual to magnetized branes [34]-

[38], represent a useful guidance for more sophisticated and hopefully realistic constructions
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that may require inter alia (non) commuting open string Wilson lines or their closed string

dual constructions [16]-[19].

The important issues of supersymmetry breaking [39]-[43] and moduli stabilization

[44]-[56] have been tackled with some success. Interactions at tree (disk and sphere) level

[57]-[65] have been studied in some detail. One-loop thresholds for the gauge couplings

have been computed [66]-[71] and some steps beyond one-loop have been made [72]. More

recently it has been argued that large extra dimensions naturally emerge in this approach

[73]-[75]. In these cases, predictions for processes with missing energy at near future col-

liders [76]-[79] have been put forward.

Following the by now standard construction of RCFT’s on surfaces with crosscaps and

boundaries [80]-[82], open and unoriented models based on genuinely interacting internal

N = 2 SCFT’s, such as Gepner models [83]-[85], have been constructed in [86]-[94] and

accurately scanned in order to test the possibility of accommodating the Standard Model

[92, 93]. Indeed, contrary to perturbative heterotic strings, it is rather contrived if not

impossible to embed interesting Grand Unified Theories (GUT’s) in perturbative Type

I strings. Exceptional groups, such as E(6) are ruled out by a theorem of Marcus and

Sagnotti’s [95, 96], and the same applies to spinorial representation of Orthogonal groups,

such as SO(10). One could then look for chiral GUT’s based on unitary groups such as

SU(5). Although, with some effort, one can find reasonable U(5) three generation models

with Higgses in the adjoint and in the 5 + 5̄, these models turn out to be unrealistic since

only the Yukawa couplings φ5ψ5χ1̄0 are allowed by U(1) charge conservation. The Yukawa

couplings φ5̄ψ1̄0χ1̄0, though SU(5) invariant, are forbidden by U(1) charge conservation

and by the impossibility of generating the necessary antisymmetric tensor εijklm as Chan-

Paton factor, i.e. taking traces of matrices [97, 98]. Barring non-perturbative effects that

can significantly change this state of affairs but whose study is only in its infancy, the best

one can achieve is some L-R symmetric extension of the SM or a Pati-Salam generalization

thereof, together with some (anomalous) U(1)’s. The role of the latter has been carefully

studied recently [99, 100] and we will not add much here.

Aim of the present paper is to derive general formulae for the (non abelian) gauge

couplings and their one-loop thresholds in Type I models based on type II Gepner models.

Quite remarkably we will find elegant and compact formulae valid whenever the internal

CFT enjoys N = 2 worldsheet SCI. This allows to construct a parent type II (B) theory

which is supersymmetric and corresponds to the compactification on a CY 3-fold (or K3

or T 2). Depending on the brane and Ω plane configuration, the resulting type I model

may enjoy spacetime susy. Indeed, as it was first advocated in [101] and it was exploited

more recently in the context of Black-Hole physics [102] and intersecting D-brane models

[103], it is possible that each pair of branes enjoys some susy (common to the Ω-planes

that can in fact coincide with some of the stacks) which is not the same for all pairs. Even

in this case, one-loop amplitudes would look supersymmetric and some of the threshold

corrections could be reliably computed by means of our formulae.

After illustrating our formulae in the case of a Type I model on the Quintic with gauge

group SO(12) × SO(20), we address the possibility of determining the Weinberg angle in

phenomenologically more promising models in this class. This is tightly related to the
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embedding of the U(1)Y hypercharge generator in the Chan-Paton group [93].

Finally, we briefly discuss the issue of computing some four-point amplitudes along the

lines of [50] and initiate the program of studying and classifying ‘magnetized’ or ‘coisotropic’

D-branes in Gepner models. As it was argued in [51], these correspond to twisted repre-

sentations of the underlying N = 2 superconformal algebra (SCA). We will not explicitly

consider the interesting possibility of constructing models with large extra dimensions based

on (freely acting) orbifolds of K3 × T 2 at Gepner points for K3 [52]. Neither we will con-

sider turning on closed string fluxes (metric torsion, NS-NS 3-form flux and R-R fluxes)

and their effect of non-trivial warping of the geometry [104]. Being optimistic, this would

at least require resorting to alternative approaches [105], where supersymmetry properties

are manifest such as the pure spinor formalism [106], or the hybrid formalism [107] or other

manifestly supersymmetric formalisms [72, 108].

We leave to future work a more thorough analysis of gauge couplings and thresholds

in phenomenologically viable models as well as the study of other important ingredients in

the low-energy effective action.

2. N = 2 SCFT and Gepner models

We start with a general discussion of the worldsheet properties of supersymmetric vacuum

configurations for (open and unoriented) strings.

2.1 N = 2 SCFT

As it was shown by Banks and Dixon [109] in order to have spacetime susy in D = 4, the

underlying SCFT must enjoy at least N = 2 superconformal invariance on the worldsheet.

In addition to the stress tensor T and the two spin 3/2 supercurrents G+ and G−, the

N = 2 superconformal algebra includes also a U(1) R-symmetry current J . A priori the

N = 2 worldsheet supercurrents can acquire arbitrary phases under parallel transport

around non-trivial cycles i.e.

G±(e2πiz) = e2πiν±G±(z) (2.1)

where we can choose |ν±| ≤ 1/2. As a consequence, their modes are labelled by r± ∈
Z + 1/2 + ν±. If ν+ + ν− 6= 0 the current J has non-integer modes and one finds what is

called a ‘twisted’ representation of the N = 2 SCA. In the rest of the paper we shall consider

only the case ν± = ±ν. As a consequence, the current J has integer modes and the two

supercurrents G± have U(1) charge ±1 respectively. Different values of ν are isomorphic

and they are connected by the ‘spectral flow’ induced by the action of the unitary operator

Uν = exp(2πiνJ0) . (2.2)

The cases ν = 0 and ν = ±1/2 correspond to the NS and R sector, respectively, and they

are related by one unit of spectral flow i.e. by U±1/2. These are singled out as the only

boundary conditions compatible with the ‘reality’ of the N = 1 supercurrent

GN=1 = G+ + G− , (2.3)
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that couples to the worldsheet gravitino. Bosonizing the U(1) current as

J = i

√
c

3
∂H , (2.4)

the spectral flow is related to the spacetime supercharges [110] that in D = 4 read1

Qα =

∫
dz

2πi
e−ϕ/2Sαe

i
2

√
c
3
H , Qα̇ =

∫
dz

2πi
e−ϕ/2Cα̇e−

i
2

√
c
3
H (2.5)

where ϕ is the superghost boson and Sα, Cα̇ are spin fields of opposite chirality. Depending

on the spin of the state, locality of the OPE of Qα,Qα̇ with the vertex operators determines

the correct quantization condition for the U(1) R-charge.

In D = 4, i.e. for cint = 9, the vertex operator for a vector boson is

V−1 = aµ(p)ψµe−ϕe
iqv

q
3
c
H

eipX (2.6)

locality requires qv = 0 (mod 2). The vertex operator for a scalar is

V−1 = φ(p)e−ϕΨ̂qoe
iqo

q
3
c
H

eipX , (2.7)

where Ψqo = Ψ̂qoe
iqo

q
3
c
H

is a primary field in the NS sector with U(1) charge q = qo and

dimension h = (1 + p2)/2. Locality requires qo = 1 (mod 2). Massless scalars correspond

to (anti)chiral primaries with h = 1/2 so that qo = ±1, a priori 0 ≤ q
CPO

< c/3. For the

(massless) LH spinor, the vertex operator is

V−1/2 = uα(p)Sαe−ϕ/2Σ̂qse
iqs

q
3
c
H

eipX , (2.8)

where Σqs = Σ̂qse
iqs

√
c
3
H is a primary field in the R sector with U(1) charge q = qs and

dimension h = (c/24) + (p2/2) and locality requires qs = +3/2 (mod 2). Massless LH

spinors correspond to R groundstates (RGS) with h = c/24 = 3/8 and qs = +3/2, so that

hbΣ = (c/24) − (3q2
s/2c), a priori −c/6 ≤ q

RGS
≤ c/6. For the (massless) RH spinor, the

vertex operator is

V−1/2 = vα̇(p)e−ϕ/2C α̇Σ̂†
qc

e
iqc

q
3
c
H

eipX (2.9)

where locality requires qc = −3/2 (mod 2).

2.2 Unitary N = 2 minimal models

Unitary N = 2 minimal models are known to form a discrete series [110]. They are

equivalent to the quotients SU(2)k ×U(1)2/U(1)k+2, so that the central charge is given by

c(k) =
3k

k + 2
, (2.10)

1We mostly focus on the case D = 4 corresponding to cint = 9.
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where k is a positive integer. The N = 2 primary fields Φ
`(k)
m,s are labelled by three quantum

numbers 0 ≤ ` ≤ k, −(k + 1) ≤ m ≤ k + 2 and s = 0,±1, 2, with ` + m + s = 0 (mod 2).

By the field identifications

Φ`(k)
m,s = Φ

`(k)
m,s+4 = Φ

`(k)
m+2(k+2),s = Φ

k−`(k)
m+k+2,s+2 (2.11)

one can restrict the values of (`,m, s) to the ‘standard’ range s = 0,±1, ` ≤ [k/2], −(k+1) <

m ≤ k + 2.

The spectrum of conformal dimensions and U(1) charges are given by2

h(`,m, s) =
`(` + 2) − m2

4(k + 2)
+

s2

8
(mod 1) , (2.12)

q(m, s) =
m

k + 2
− s

2
(mod 2) . (2.13)

Every N = 2 minimal model can be decomposed into a parafermionic theory and a

free U(1) boson, so that

T = TPF − 1

2
∂H∂H , G± =

√
2c(k)

k
ψ±

PF e
±i

q
3

c(k)
H

, J = i

√
c(k)

3
∂H (2.14)

one has

Φ`(k)
m,s = Φ̂

`(k)
m−se

iγk
m,sH (2.15)

where

γk
m,s =

√
k + 2

k

(
m

k + 2
− s

2

)
=

√
3

c(k)
q(m, s) . (2.16)

Unitarity requires hΦ̂ ≥ 0 i.e. hΦ ≥ 3q2/2c(k) (‘unitary parabola’). Moreover, in the NS

sector (s = 0, 2)

h
NS

≥ 1

2
|q

NS
| . (2.17)

The inequality is saturated by (anti) chiral primary operators (CPO) corresponding to

m = ±` and s = 0 with |q
CPO

| ≤ c(k)/3 that satisfy

G+
−1/2|h = q/2; q〉

CPO
= 0 or G−

−1/2|h = −q/2; q〉
CPO†

= 0 . (2.18)

In the R sector (s = ±1)

hR ≥ c(k)

24
. (2.19)

The inequality is saturated by Ramond ground-states (RGS) corresponding to m = ±(`+1)

and s = ±1 with |q
RGS

| ≤ c(k)/6 that satisfy

G±
0 |h = c(k)/24; q〉

RGS
= 0 (2.20)

and contribute to the Witten index IW = Tr(−)F .

2In the rest of this paper we shall always tacitly assume the (mod 1) and (mod 2) conditions for h and q.
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2.3 Gepner models

Gepner models [83, 85] are tensor products of r minimal N = 2 models quotiented by a

subgroup of the discrete symmetries that keeps only the states with quantized U(1) charge

and sectors in which the N = 1 worldsheet supercurrent

GN=1 = G+ + G− =

r∑

i=1

(G+
i + G−

i ) (2.21)

is well defined i.e. transforms covariantly, acquiring at most a sign under parallel trans-

port around non-trivial cycles. The latter condition looks at first as a merely worldsheet

requirement, dictated by consistency of the coupling of GN=1 to the worldsheet gravitino,

but actually it is a necessary condition for BRS invariance and decoupling of negative norm

states. The U(1) charge quantization is equivalent to the condition for spacetime super-

symmetry, whose chiral action (‘spectral flow’) is only well defined on states with quantized

U(1) charges. Indeed bosonizing the U(1) current one finds

J = i

√
c

3
∂H = i

∑

i

√
ci

3
∂Hi , (2.22)

so that

H = i
∑

i

√
ci

c
∂Hi . (2.23)

For our latter purposes it is crucial to further investigate the decomposition of the

individual terms in the N = 1 worldsheet supercurrent (2.21)

G±
i = Ĝ±

i e
±i

q
3
ci

Hi
(2.24)

where Ĝ±
i = ψ±

PF,i are NS primary fields of dimension

h bG±
i

=
3

2
− 3

2ci
= 1 − 1

ki
(2.25)

that can be identified with the fundamental Zki
parafermions defining the coset

SU(2)ki
/U(1). In particular for k = 1 one has Ĝ± = 1, while for k = 2 one finds

Ĝ+ = Ĝ− = ψ, the ‘real’ fermion of the Ising model. The first ‘non-trivial’ case is k = 3

(relevant for the quintic) where Ĝ+ = ρ and Ĝ− = ρ† with hρ = hρ† = 2/3.

Moreover, as stated above, one should demand νi = νj = νst for any i and j, with

st standing for Gst = ψµ∂Xµ, in order for Gtot = Gst + Gint to be well defined. This

is at the heart of the so-called βi Zr
2-projections which were first introduced by Gepner

[83] in analogy with what was done in free fermionic models. Experience with orbifolds

and magnetized and/or intersecting D-branes suggest that ‘twisted’ representations that

have been thrown out of the door may snick in through the window. Indeed, one can

preserve covariance of the N = 1 worldsheet supercurrent Gtot = Gst + Gint by changing

the boundary conditions of the internal bosonic coordinates XI
int and at the same time

by implementing the same (‘contragradient’) change of the internal fermionic coordinates
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ΨI
int. Inspection of (2.24) suggests that a shift of the boson Hi can be ‘compensated’ by a

twist of the parafermion ψPF,i. We will further elaborate on this observation in Section 6.

For the time being let us focus on standard ‘untwisted’ UIR’s.

For tensor product theories, primary fields can be written as Φh,q =
∏

i Φhi,qi
with

h =
r∑

i=1

hi =
r∑

i=1

[
`i(`i + 2) − m2

i

4(ki + 2)
+

s2
i

8

]
(2.26)

and

q =
r∑

i=1

qi =
r∑

i=1

[
mi

ki + 2
− si

2

]
. (2.27)

In order to restrict the spectrum to the states on which GN=1 acts consistently, as a

whole, one has to combine states that impose the same boundary condition on each term

in (2.24). The resulting Zr
2 projection can be achieved in different ways. We follow the

orbit procedure developed by Eguchi, Ooguri, Taormina and Yang [85].

In our conventions, the total susy charge (which is proportional to the spectral flow

operator) reads

Q = S2

∏

i

Φ
(i),0
−1,−1 . (2.28)

It has total charge c/6 =
∑

i ci/6 = 3/2 in D = 4 i.e. for c = 9 and, barring the spin field

S2 (with helicity λ = +1/2 and scaling dimension 1/8), dimension c/24 =
∑

i ci/24 = 3/8.

The supercurrent in each subtheory reads

Gi = Φ
(i),0
0,2 . (2.29)

Then, given the Highest Weight State (HWS) XHWS
V in the V2 part of a ‘resolved’ susy

character (e.g. for the identity sector XHWS
V =

∏
i X

(i),0
0,0 ) satisfying

qHWS
V = 0 (mod 2) (2.30)

the action of Qn
∏

i G
pi
i maps it into a state with

q(n, pi) = qHWS
V + n

c

6
+

∑

i

pi = qHWS
V + n

3

2
+

∑

i

|pi| , (2.31)

since pi = |pi| (mod 2) for pi = 0, 1. Setting

K = l.c.m.{4, 2(ki + 2)} (2.32)

we can write for the complete Gepner model characters (orbits)3

χI =

K−1∑

n=0

(−)nQn
r∏

i=1

∑

pi=0,1

(O2 Gi)
pi(V2 XHWS

V,I ) . (2.33)

3When all the levels are odd, one has in addition to divide (2.33) by 2.
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For some purposes, it is convenient to manifestly separate the contribution of the non

compact space-time super-coordinates and write e.g. for D = 4

χI = V2X V
I + O2XO

I − S2X S
I − C2XC

I , (2.34)

where V2, O2, S2, C2 are SO(2) characters at level one and the minus signs take into

account spin and statistics. Supersymmetry entails χI = 0 for all I. Since by assumption

(see eq. (2.30))

qHWS
V =

∑

i

[
mi

ki + 2
− si

2

]
= 0 (mod 2) (2.35)

for the Ramond sector internal characters one finds

X S
I =

K
4
−1∑

m=0




∑

pi=0,1
P

i pi=0(mod 2)

∏

i

χ
`i(ki)
mi−4m−1,si−1+2pi

+
∑

pi=0,1
P

i pi=1(mod 2)

∏

i

χ
`i(ki)
mi−4m+1,si+1+2pi



 ,

(2.36)

and

XC
I =

K
4
−1∑

m=0




∑

pi=0,1
P

i pi=0(mod 2)

∏

i

χ
`i(ki)
mi−4m+1,si+1+2pi

+
∑

pi=0,1
P

i pi=1(mod 2)

∏

i

χ
`i(ki)
mi−4m−1,si−1+2pi



 .

(2.37)

In principle the resulting ‘supersymmetric’ characters (2.34) have ‘length’ (total num-

ber of terms) L = 2rK. However, although neither Q nor Gi independently have fixed

points, i.e. they act freely, it may happen that some orbits are shorter due to field identifi-

cations. It can be shown, that this can happen only when some of the ki are even and that

the short orbits are always twice shorter Lshort = 2r−1K, so as far as only the spectrum

of conformal dimensions is considered, one has simply to halve the expressions above. The

situation becomes more involved if modular transformations are considered. In this case

one has to resolve the fixed point ambiguity which amounts to ‘split’ the representation

encoded in the supersymmetric character into two independent representations, possibly

conjugate to one another, that have to be labelled by an additional quantum number.

2.4 Open descendants

In these cases, the parent ‘oriented’ closed string theory is based on a perturbative spectrum

encoded in the one-loop torus partition function

T =
∑

I,J

TIJχI χ̄J (2.38)

where q = exp(2πiτ) and the characters χI provide a fully resolved unitary representation

of the modular group. The non-negative integers TIJ are tightly constrained by modular

invariance. Denoting by I = 0 the character of the identity representation of the RCFT,

T00 = 1 implies the presence of only one graviton in the massless spectrum. Simple solutions

– 8 –
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are: the charge conjugation modular invariant TIJ = CIJ (‘Cardy’), and the ‘diagonal’

modular invariant TIJ = δIJ .

The massless spectrum is encoded in those combinations for which hI = h̄J = 1/2.

Since V2 already corresponds to hV = 1/2, the only massless contribution of this kind comes

from X V
0 which corresponds to the identity of the internal CFT. Other massless bosons

come from O2 combined with hint
I = h̄int

J = 1/2. In Gepner models these are in one to one

correspondence with chiral (c) and anti-chiral (a) primary operators with qI = ±q̄J = ±1,

respectively. In type IIB, (c,c) states and their conjugate (a,a) states give rise to h2,1 N = 2

vector multiplets, comprising two NS-NS scalars and one R-R vector, while (c,a) states and

their conjugate (a,c) states give rise to h1,1 + 1 N = 2 hyper-multiplets, comprising two

NS-NS scalars and two R-R ‘axions’ (dual to two-forms). The special Kähler ‘geometry’

of the vector multiplets is tree level exact since corrections in gs = 〈φ〉 are forbidden.

Indeed the dilaton φ is part of the universal hypermultiplet and as such it cannot have

neutral couplings to vector multiplets. The same argument applies to worldsheet instanton

corrections that depend on the sizes of the holomorphic cycles governed also by scalars in

hypermultiplets. On the contrary, the dual quaternionic geometry of the hypermultiplets

can be corrected both perturbatively and non-perturbatively.

The generalized Ω-projection is encoded in the Klein bottle amplitude

K =
∑

I

KIχ
I(qq̄) (2.39)

where KI = TII (mod 2) determines in particular which massless fields are retained. Typ-

ically (but not necessarily) both vector multiplets and hypers produce ‘chiral’ (or rather

linear) multiplets. Yet if one splits h2,1 into h+
2,1 + h−

2,1 where the apex indicates an ex-

tra possible sign, constrained by the so-called crosscap constraint and associated to some

internal anticonformal involution, one can show that the resulting unoriented spectrum

contains h+
2,1 chiral multiplets and h−

2,1 abelian vector multiplets, comprising R-R vectors,

in addition to h+
1,1 + h−

1,1 chiral/linear multiplets.

The open string partition function is given by

A =
∑

I,a,b

AIab̄n
an̄bχI , (2.40)

where na is the number of ‘generalized’ D-branes of type a and AI
ab are integer multiplicities

constrained by the quadratic equations
∑

bb̄

AIab̄δ
b̄bAJbc̄ =

∑

K

NK
IJAKac̄ , (2.41)

where NK
IJ are the fusion rule coefficients, which can be expressed in terms of the fully

resolved SIJ via Verlinde formula. Finally, the Möbius strip Ω-projection reads

M =
∑

I,a,b

MIan
aχ̂I , (2.42)

where MIa = AIaa (mod 2) and χ̂I denote a real basis of characters introduced in [12]. We

remind that the arguments of the Annulus and Möbius amplitudes are different, namely
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τA = it/2, τM = τA + 1/2. In what follows (unless essential), we shall systematically omit

the τ dependence in the characters.

Worldsheet covariance conditions between the direct channel, exposing the projec-

tion of the closed string spectrum (K) or the open string spectrum (A and M), and the

transverse channel (which is exposing the closed string exchange between boundaries and

crosscaps) puts tight constraints on the coefficients KI , AIab̄ and MIa.

For the case of the charge conjugation modular invariant TIJ = CIJ one has as many

boundaries (i.e. n’s) as characters, and one solution (known as Cardy’s solution) is given

by

AIJK = NIJK , KI = YI00 , MIJ = YJI0 . (2.43)

Here NIJK are the fusion rule coefficients, while YIJK are (possibly negative) integers given

by

YIJK =
∑

L

SILPJLPKL

S0L
, (2.44)

where P = T 1/2ST 2ST 1/2 is the Möbius strip modular matrix implementing the transfor-

mation (it+1)/2 → (i+ t)/2t. The respective boundary and crosscap reflection coefficients

are

BI =

∑
J SIJnJ

√
S0I

, ΓI =
P0I√
S0I

. (2.45)

3. Tree level gauge couplings

As suggested in [111], the ‘generalized’ Born-Infeld action for branes in (non)geometric

backgrounds that admit a (rational) CFT description can be extracted from factorization

of the one-loop annulus amplitude in the transverse channel. This applies to Gepner models

which are expected to correspond to special (often non singular) points in the moduli space

of CY compactifications, where the Kähler and the complex structure moduli take string

scale VEV’s i.e. R ≈
√

α′ and the supergravity approximation might be questionable.

Yet, the worldsheet string description is fully reliable in perturbation theory. In fact non-

perturbative effects in R2/α′ and even in 1/gs may be systematically incorporated.

3.1 Tadpole cancellation and gauge couplings

A consistent space time interpretation, requires the absence of tadpoles for massless states,

which schematically reads

BI + 2D/2ΓI = 0 , ∀I : hI = 1/2 . (3.1)

Although NS-NS tadpoles only signal an instability of the chosen configuration, it has

proved very hard to dispose of them by vacuum redefinition [112, 113]. On the other hand,

R-R tadpoles are associated to anomalies [111]. In fact R-R tadpole conditions are more

restrictive than simply chiral anomaly cancellation that is associated to R-R tadpoles in

sectors with non-vanishing Witten index [111]. Actually some left-over anomalies involving

U(1) factors in the Chan-Paton group can be disposed of by the combined effect of axions,

– 10 –



J
H
E
P
0
3
(
2
0
0
7
)
0
5
9

playing the role of Stückelberg fields, and generalized Chern-Simons couplings [99]. We

will henceforth assume that a solution to the R-R tadpole conditions has been found, i.e. a

consistent choice of na has been made. Supersymmetry would then imply the absence of

NS-NS tadpoles.4

Tree level dependence of gauge couplings on massless closed string moduli can be deter-

mined by considering a three-point amplitude on the disk with one closed string insertion

in the bulk and two massless open string insertions (vector bosons) on the boundary. The

boundary is mapped to the brane a. The amplitude reads

〈cV (0)
A (x1)

∫
V

(0)
A (x2)cc̄V

(−1,−1)
ReZ (z, z̄)〉 (3.2)

for the CP even coupling and

〈cV (0)
A (x1)

∫
V

(−1)
A (x2)cc̄V

(−1/2,−1/2)
ImZ (z, z̄)〉 (3.3)

for the CP odd coupling. For the open string insertions one can use the gauge boson vertex

operators introduced previously. For the closed string insertion one has to combine scalar

vertex operators for the Left and Right movers. Using SL(2) invariance one can put z = i,

z̄ = −i and x1 = ∞. Integration over x2 produces a constant and the overall factor is

exactly BI
aTra(T1T2) where the Chan Paton factor has replaced na that appears for an

empty boundary. This measures

BI
a =

∂fa

∂ZI

∣∣∣∣
ZI=0

(3.4)

where we have assumed that the rational (Gepner) point corresponds to ZI = 0 and

fa =
iϑa

2π
+

4π

g2
a

, (3.5)

is the gauge kinetic function for branes of type a.

One arrives at the above conclusion by ‘factorization’ of the one-loop non-planar ampli-

tude in the transverse channel. If χI is a massless character which starts with the complex

scalar field ZI , one can conclude that the tree-level gauge coupling is given by

fa(ZI) = fa(ZI = 0) + BI
aZI , (3.6)

to lowest order in ZI . In particular the dilaton dependence, measuring the tension of the

brane, is given by naB0
aZ0 where Z0 = S to adhere to standard notation. In fact if ZI

contains a pseudoscalar axion, shifting under some (gauged) PQ symmetry, this is the full

story, i.e. f is at most linear in ZI . This is always true in sectors with non-vanishing

Witten index. The dependence on ZI belonging to sectors with vanishing Witten index

can be more involved and they can appear in the one-loop threshold corrections. Moreover,

multiplicities in sectors with N = 1 susy i.e. non vanishing Witten index are excluded by

4As mentioned in the introduction, it is sufficient that each pair of branes preserves some supersymmetry

in order for this to be true.
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our assumption that fixed point ambiguities have been resolved. On the contrary, sectors

with N = 2 susy entail a twofold degeneracy at least. Scalars from sectors with N = 4

susy can contribute to the tree level gauge couplings but not to the one-loop thresholds.

Anyway, it is remarkable how a low-energy coupling can directly probe the structure of the

underlying RCFT coded in the BI
a, that in turn depend on the choice of KI , AIab and MIa

and the ‘resolved’ matrices SIJ and PIJ . In particular the value of the Weinberg angle at

the string scale is related to the ratio of the real parts of the gauge kinetic function for

SU(2)W and the properly normalized U(1)Y ,

tan2 ϑW =
g2
Y

g2
W

=
RfW

RfY
=

RBI
W ZI

RBJ
Y ZJ

(3.7)

where as above Z’s runs over all closed string moduli fields and, obviously, in order for

the formula to be predictive at all, one has to assume the closed string moduli have been

stabilized by some flux or non-perturbative effect.

4. One-loop thresholds corrections

The purpose of this Section is to obtain explicit and (relatively) simple formulae for the

one-loop threshold corrections to the gauge couplings. In four dimensions, gauge couplings

run logarithmically as a result of massless particles in the loops. Massive states, such as

generalized KK modes or genuine string excitations, induce threshold corrections ∆a in the

form of
1

g2
a(µ)

=
1

g2
a(M)

+
ba

8π2
log

( µ

M

)
+ ∆a (4.1)

where ba is the coefficient of the one-loop β function. Threshold corrections signal the

dependence on the light scalar fields in the macroscopic theory of the mass scale M at

which the matching with the microscopic theory is performed.

We will follow the strategy pioneered in [66, 67] and successfully applied to type I

orbifolds in [68, 101], to generic type I vacuum configurations in [101] and to intersecting

brane models in [69], based on the background field method. We give only a very brief

summary of the arguments. For details see e.g. [71]. The method consists in applying a

small abelian constant magnetic field in some spacetime directions, computing the effect

of such an integrable deformation and then extracting the quadratic term in the one-loop

effective action.

Following [71], we turn on an abelian magnetic field in spacetime directions 2 and 3,

leaving unmodified the light cone directions 0 and 1,

Fµν = δ2
[µδ3

ν]fH (4.2)

where H is one of the generators of the unbroken CP group. Depending on the embedding

of H in the CP group one finds different behaviors. To avoid complications we will focus

only on the case in which H is a generator of a non-abelian and thus non-anomalous factor

labelled by a. Expanding the Annulus and the Möbius amplitudes Aa(f) and Ma(f) to

– 12 –



J
H
E
P
0
3
(
2
0
0
7
)
0
5
9

second order in f , one finds schematically for the one-loop gauge threshold for the group

to which belongs H [67, 68]:

∆a =

∫
dt

t
(A′′

a(0) + M′′
a(0)) =

∫
dt

4t
Ba(t) , (4.3)

where the prime denotes the derivative with respect to f . The expression is IR divergent,

signalling the running of the gauge couplings, and needs regularization that, for non abelian

gauge groups simply amounts to replacing Ba(t) with Ba(t) − ba with ba the on-loop β

function coefficient.

The presence of the magnetic field implies that the space-time characters entering the

Annulus and Möbius amplitudes will have a non-zero z argument.

χI(z, τ) = V2(z, τ)X V
I (0, τ)+O2(z, τ)XO

I (0, τ)−S2(z, τ)X S
I (0, τ)−C2(z, τ)XC

I (0, τ) , (4.4)

where I labels the different orbits / sectors in the theory. Let us stress that z 6= 0 (f 6= 0) in

eq. (4.4) breaks supersymmetry, so the characters χI(z, τ) are not identically zero anymore.

The second derivative with respect to f in eq. (4.3) translates into a second derivative with

respect to z of the characters χI(z, τ). Since only the space time is z dependent, one finds

BI(0) = V ′′
2 (0)X V

I (0) + O′′
2 (0)XO

I (0) − S′′
2 (0)X S

I (0) − C ′′
2 (0)XC

I (0) , (4.5)

where here, and in the rest of this Section, prime denotes a derivative in z. Putting all

pieces together

Ba(t) =
∑

I,b

AI
abn

bBI(t) +
∑

I

M I
a B̂I(t̂) , (4.6)

where AI
ab, M I

a are integer multiplicities and nb are the number of branes in each stack.

4.1 Thresholds from N = 2 SCFT

Due to the very complicated form of the internal characters X λ
I in Gepner models, the

above expression for BI(0) is not very useful. In order to rewrite it in a more tractable

form, let us introduce the supersymmetric SO(2) × U(1)R spacetime characters v, φ, φ†

defined by [114, 25]

v(z, y) = V2(z)ξ0(y) + O2(z)ξ3(y) − S2(z)ξ+3/2(y) − C2(z)ξ−3/2(y) ,

φ(z, y) = V2(z)ξ−2(y) + O2(z)ξ+1(y) − S2(z)ξ−1/2(y) − C2(z)ξ+5/2(y) , (4.7)

φc(z, y) = V2(z)ξ+2(y) + O2(z)ξ−1(y) − S2(z)ξ−5/2(y) − C2(z)ξ+1/2(y) .

Here ξp(y) which encode the coupling to the total R-symmetry charge JR =
∑

i J
(i)
R , are

given by

ξp(y) =
1

η

∑

n

q
1
6
(p+6n)2e2πiy(p+6n) (4.8)

and satisfy

12πi ∂τ (ξp(y)η) = η ∂2
yξp(y) . (4.9)
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In any SUSY compactification to D = 4, the characters can be decomposed according

to

χI(z, y, τ) = v(z, y, τ)χ̂v
I (τ) + φ(z, y, τ)χ̂φ

I (τ) + φc(z, y, τ)χ̂φc

I (τ) , (4.10)

where χ̂Λ are characters of (N = 2)/U(1)R. It is quite remarkable and crucial for our

subsequent analysis that

v(z, y = z/3) = 0 , φ(z, y = z/3) = 0 , φc(z, y = z/3) = 0 , (4.11)

for any z thanks to theta functions identities (cf. e.g. [115]). Then it follows immediately

that also

χI(z, z/3, τ) = 0 , (4.12)

for all values of I, z and τ . This tantalizingly suggest the possibility of building more

general supersymmetric ‘magnetized’ aka ‘coisotropic’ branes. We will come back to this

issue in a later section.

Taking the first derivative with respect to τ and the second derivative with respect to

z of eqs. (4.7) for y = z/3 and using that 4πi∂τχ
SO(2)
λ (z) = ∂2

zχ
SO(2)
λ (z) (up to an irrelevant

η) as well as eq. (4.9) one finds

B +
1

3
A = 0 , B +

1

9
A = −2

3
C . (4.13)

Here B collectively denotes terms with second derivative of χ
SO(2)
λ (z) (i.e. which contribute

to the thresholds), A denotes terms with second derivative of ξp(z/3) and C terms with two

first derivatives. Eliminating A, one finds B = −C and after substituting in eqs. (4.10,4.7)

one then gets

BI(z, z/3) = −[V ′
2(z)(X V

I )′(z/3) + O′
2(z)(XO

I )′(z/3)

−S′
2(z)(X S

I )′(z/3) − C ′
2(z)(XC

I )′(z/3)] , (4.14)

where X λ
I (z/3) denotes the character valued internal partition function in the relevant

sector of the orbit I.

For z = 0, V ′
2(0) = O′

2(0) = 0, while S′
2(0) = −C ′

2(0) = iθ1
′/2 = iπη3 that cancels a

similar factor in the denominator. So finally we obtain

BI =
d

dy
(X S

I (y) −XC
I (y))

∣∣∣∣
y=0

. (4.15)

We stress that this general formula is valid for any susy compactification to D = 4. In the

particular case of Gepner models, it can be additionally simplified. Indeed, using eqs. (2.36)

and (2.37), we can write

BI =
d

dy
WI(y)

∣∣∣∣
y=0

, (4.16)

where WI(y) in the sector I is given by

WI(y) = (−1)
r+

P
i

mi
ki+2

K/2−1∑

n=0

(−1)n(r−1)
r∏

i=1

W`i
mi−2n−1(y) , (4.17)
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where

W`i
mi−2n−1(y) = χ`i

mi−2n−1,1(y) − χ`i
mi−2n−1,−1(y) = TrHi,n [(−)F e2πiyJoqLo−ci/24] (4.18)

is called elliptic index. For y = 0 it is a constant, and since only the Ramond groundstates

contribute

W`i
mi−2n−1(y = 0) = I`i

mi−2n−1 = δmi−2n−1,`i+1 − δmi−2n−1,−`i−1 , (4.19)

where both deltas are computed mod 2(ki + 2). Thus the derivative in eq. (4.16) reduces

to

WI
′(y = 0) = (−1)

r+
P

i
mi

ki+2

K/2−1∑

n=0

(−1)n(r−1)
r∑

j=1

(W`j

mj−2n−1)
′(y = 0)

r∏

i=1
i6=j

I`i
mi−2n−1 .

(4.20)

This expression can be further simplified with the help of eq. (4.19).

Starting from the expression for χNS+

l,m , given in [52], one can derive the expression for

W`
m = χR−

l,m by a shift of the argument z → z + (τ + 1)/2

W`
m(z) = χ`

m,1(z) − χ`
m,−1(z) (4.21)

=

eiπ( `+m+1
k+2

−1) θ1(z, τ) θ

[
− `+1

k+2
+ 1

2
1
2

]
(0, (k + 2)τ) η3((k + 2)τ)

η3(τ) θ

[
`+m+1−(k+2)

2(k+2)
1
2

]
(z, (k + 2)τ) θ

[
−`+m−1+(k+2)

2(k+2)
1
2

]
(z, (k + 2)τ)

=

e−iπz( m
k+2) q

(`+1)2−m2

4(k+2) η3
(
(k + 2)τ

)
θ1(z, τ) θ1

(
(` + 1)τ, (k + 2)τ

)

η3(τ) θ1

(
z − `−m+1

2 τ, (k + 2)τ

)
θ1

(
z + `+m+1

2 τ, (k + 2)τ

) .

It is immediate that W`
m(0) = 0 unless m = ` + 1 or m = −(` + 1), W`

`+1(0) = 1 and

W`
−`−1(0) = −1. Moreover one can show that

k∑

`=0

W`
`+1(z) =

θ1(
k+1
k+2z, τ)

θ1(
1

k+2z, τ)
. (4.22)

Let us denote

a =
` + 1

(k + 2)
, b =

` + 1 − m

2(k + 2)
, c =

` + 1 + m

2(k + 2)
. (4.23)

Then for the derivatives (W`
m)′(0) one finds

(W`
`+1)

′(0) = (W`
−`−1)

′(0) =
d

dy
ln

(

θ

[
1
2 − a

1
2

]

(y, (k + 2)τ)

)∣∣∣∣∣
y=0

, (4.24)
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while if m 6= ` + 1,−` − 1

(W`
m)′(0) = 2πi q

(`+1)2−m2

4(k+2)
Pk(0)

2 Pk(a) Pk(1 − a)

Pk(b) Pk(1 − b) Pk(c) Pk(1 − c)
, (4.25)

where

Pk(α) =

∞∏

n=1

(1 − q(k+2)(n−α)) . (4.26)

4.2 Thresholds in toroidal orbifolds

For completeness and for comparison, let us summarize here known formulae for the thresh-

olds corrections to gauge couplings in Type I (magnetized) toroidal orbifolds. It is known

that some Gepner models, e.g. (k = 1)9 or (k = 2)6 models in D = 4, correspond to

toroidal orbifolds at special points in their moduli spaces. Formulae in this section would

then apply to these cases. For brevity we only discuss the contribution of N = 1 supersym-

metric sectors. Expanding the annulus and Möbius strip amplitudes to quadratic order in

the background field f and summing over spin structures by means of

∑

αβ

cαβ

θ′′[αβ ](0)

η3

∏

I

θ[αβ ](uI)

θ1(uI)
= 2π

∑

I

θ′1(u
I)

θ1(uI)
, (4.27)

give

BN=1
a (t) =

i

π

∑

b

IabNb

∑

I

θ′1(u
I
ab|τA)

θ1(uI
ab|τA)

B̂N=1
a (t) = − i

π

∑

a

IaãNa

∑

I

θ′1(u
I
aã|τM )

θ1(uI
aã|τM )

, (4.28)

where

uI
ab = κvI

ab + εI
abτ , (4.29)

satisfy
∑

I uI
ab = 0 and take into account both the orbifold projection κvI

ab (e.g. κ = 1, ..., n

for Γ = Zn) and the mass shift εI
ab due to magnetic flux or intersections at angle. The

one-loop β-function coefficients can be extracted from the IR limit of (4.28).

In order to perform the integral and compute ∆a in magnetized tori (vI
ab = 0), it is

convenient to switch to the transverse channel, where one finds

∆N=1
a =

1

2π

∑

a,b

IabNb

∑

I

∫ ∞

0

θ′1(ε
I
ab|i`)

θ1(εI
ab|i`)

d` ,

∆̂N=1
a = − 1

2π
2Iaã

∑

I

∫ ∞

0

θ′1(ε
I
0a|i` + 1/2)

θ1(ε
I
0a|i` + 1/2)

d` . (4.30)

Series expansion

θ′1(ε|τ)

θ1(ε|τ)
π cot(πε) + 2

∞∑

k=1

ζ(2k)εk(E2k(τ) − 1) , (4.31)
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where ζ(2k) = (2π)2k|B2k|/(2k)! and E2k(τ) is an Eisenstein series with modular weight

2k, expose potentially divergent terms that eventually cancel thanks to (NS-NS) tadpole

cancellation, for the non-anomalous H, with Tr(H) = 0. The finite terms boil down to

integrals of the form (see for example [69])

∫ ∞

0
d`

∞∑

k=1

2ζ(2k)εk(E2k(i`) − 1) = −π log

[
Γ(1 − ε)

Γ(1 + ε)

]
+ 2πεγE , (4.32)

∫ ∞

0
d`

∑

k

2ζ(2k)εk(E2k(i` + 1/2) − 1) = −π log

[
Γ(1 − 2ε)

Γ(1 + 2ε)

]
+ 2πεγE . (4.33)

Actually the last contributions, linear in ε, drop after summing over the three internal

directions in supersymmetric cases.

Summing the various contributions one finally gets

∆N=1
a = −

∑

b

IabNb

∑

I

log

[
Γ(1 − εI

ab)

Γ(1 + εI
ab)

]
,

∆̂N=1
a =

∑

a

2Iaã

∑

I

log

[
Γ(1 − εI

aa)

Γ(1 + εI
aa)

]
, (4.34)

where εI
aa = 2εI

ao.

Field dependent thresholds corrections from N = 2 sectors with vanishing Witten

index (uI
ab = 0 for some I =‖, so that u⊥,1

ab = −u⊥,2
ab ) are much easier to compute since they

correspond to BPS saturated couplings. We refrain from doing so explicitly here. N = 4

sectors (uI
ab = 0 for all I) do not contribute threshold corrections to the gauge couplings.

5. Examples

Once the general formula has been derived, in order to compute explicit thresholds one has

to put together various bits and pieces.

First one has to fix the integer multiplicities in the annulus and Moebius amplitudes

compatibly with tadpole cancellation.

Second one has to choose a non-abelian group and identify the sectors of the open

string spectrum which are charged. We neglect possibly anomalous U(1)’s since the above

formulae do not immediately apply. In fact they rather compute the masses of the gauge

bosons via their mixings with R-R axions.

Third one has to perform the integral over t. This was done above for magnetized

tori and it is possible for some contributions (from fully massless sectors) in type I Gepner

models as well.

Let us discuss what happens in various dimensions.

5.1 Models in D = 8

In D = 8 supersymmetric models correspond to compactifications on 2-tori. The two

derivative effective action is tree level exact because of susy. Some four derivative terms
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such as F 4 are 1/2 BPS saturated. Starting from the seminal paper by Bachas and Fabre

[67], one-loop threshold corrections to these and other BPS saturated have been used as

tests of various string dualities. For a comprehensive review see [116].

5.2 Models in D = 6

Threshold corrections in D = 6 are topological in the sense that only massless states can

contribute. Indeed in theories with N = (1, 0) susy the gauge couplings can only depend

on the VEV’s of scalar that belong to tensor multiplets and not to hypermultiplets because

of susy. In perturbative heterotic models the only tensor multiplet contains the dilaton

and this produces the standard dependence of the gauge coupling from the string coupling.

All the remaining moduli, either charged or neutral, belong to hypemultiplets. In type I

constructions [12] various neutral tensor multiplets are present whose scalar components

belong to the NS-NS sector. In principle gauge couplings may depend on them. There is a

tight connection with anomaly related couplings as required by the generalized mechanism

of anomaly cancellation.

After compactification to D = 4 on a 2-torus one gets N = 2 theories whose gauge

kinetic function is 1/2 BPS saturated. Only generalized KK modes contribute to the

threshold. Generalized compactifications á la Scherk-Schwarz with freely acting orbifolds

preserving N = 1 may lead to interesting applications of our analysis in connection with

large extra dimensions.

5.3 Models in D = 4. The Quintic : (k = 3)5 model

The simplest non trivial case is a Type I model on the Quintic [87, 88, 52]. It is based

on the diagonal modular invariant that puts fewer tadpole constraints than the charge

conjugation modular invariant. Indeed, in the transverse channel only two massless sectors

can propagate. The identity and the sector containing the unique (c,a) massless state

(unique deformation of the Kähler structure). To cancel tadpoles one can introduce so-

called B-type branes and in particular one can build a model with SO(12)×SO(20) Chan-

Paton group. Though non chiral, the model serves as a non trivial illustration of our

procedure.

The annulus partition function is given by

A =
1

2
(n2

0 + n2
1)χA + (

1

2
n2

1 + n0n1)χB , (5.1)

where n0 = 12 and n1 = 20. The Möbius strip projection reads

M = −1

2
(n0 + n1)χ̂A +

1

2
n1χ̂B . (5.2)

Here χA and χB are given by

χA =
1

5

[
(χI)

5
]susy

,

χB =
1

5

[
(χI)

4 χII

]susy
, (5.3)
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where χI and χII are defined as

χI =
1

2

(
χ0

0,0 + χ0
0,2 + χ0

2,0 + χ0
2,2 + χ0

4,0 + χ0
4,2 + χ0

6,0 + χ0
6,2 + χ0

8,0 + χ0
8,2

)
, (5.4)

χII =
1

2

(
χ1

1,0 + χ1
1,2 + χ1

3,0 + χ1
3,2 + χ1

5,0 + χ1
5,2 + χ1

7,0 + χ1
7,2 + χ1

9,0 + χ1
9,2

)
, (5.5)

in terms of the N = 2, k = 3 characters χ`
m,s.

The massless spectrum is given by N = 1 vector multiplets in Adj[SO(20)×SO(12)] =

(190 + 66) plus four chiral multiplets in the (20,12) and as many in the (210,1). One

can thus easily compute the β functions for SO(20) and SO(12) and get

βSO(20) = 3(20 − 2) − 4(12 + (20 + 2)) = −82

βSO(12) = 3(12 − 2) − 4(20) = −50 (5.6)

both gauge couplings are IR free.

From eqs. (4.16-4.22) we find:

BA = −5(W0
1 )′ − 5(W0

9 )′ − 30(W0
5 )′ + 20(W0

3 )′ + 20(W0
7 )′ , (5.7)

and

BB = 8(W0
1 )′ + 8(W0

9 )′ − 4(W1
2 )′ − 4(W1

8 )′ +

8(W0
5 )′ − 12(W0

3 )′ − 12(W0
7 )′ + 6(W1

0 )′ + (W1
4 )′ + (W1

6 )′ . (5.8)

These derivatives can be computed with the help of eqs. (4.23-4.26). In particular for the

contributions relevant for the β functions are

(W0
1 )′ = (W0

9 )′ =
3

5
iπ + . . . (5.9)

(W1
2 )′ = (W1

8 )′ =
1

5
iπ + . . . (5.10)

Contributions of fully massless sectors can be computed by means of (4.24) and integrated

by means of (4.33). The contributions to the thresholds that involve one massive subsector

can be computed by means of (4.25). We have not yet been able to find a simple way to

integrate the result as for the fully massless sectors.

6. Magnetized aka coisotropic D-branes

In toroidal or orbifold compactifications one can easily impose ‘generalized’ boundary con-

ditions that correspond to turning on a constant magnetic field on the worldvolume of the

D-brane

[∂Xi − Ri
aj ∂̄Xj]|a〉F = 0 , [ψi − iηRi

ajψ̄
j ]|a〉F = 0 (6.1)

where η = ±1, depending on the sector, and the orthogonal matrix (in the frame basis)

reads

Ri
aj = [δi

ak − F i
ak][δ

k
aj + F k

a j]
−1 (6.2)
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Ri
aj can be diagonalized in a complex a-dependent basis ZI , Z∗

I , so that

∂ZI = e2πiνI
a ∂̄ZI (6.3)

as a result the modes of ZI are shifted according to nI → nI + νI
a . A similar analysis

applies to the complex fermions ΨI ,Ψ∗
I such that G = ∂Z∗

I ΨI + ∂ZIΨ∗
I (a-independent!!).

When several stacks of magnetized branes are present, the rotation matrices Ra and Rb

for different stacks would not commute in general. When [Ra, Rb] = 0 for all a and b, all

the magnetic fields are parallel, otherwise [Ra, Rb] 6= 0 and the magnetic fields are oblique.

Performing appropriate T-dualities on magnetized D9-branes one ends up with intersecting

magnetized D-branes aka coisotropic D-branes. For parallel fields appropriate T-dualities

lead to intersecting D-branes with no magnetization aka isotropic branes.

We would like to extend this analysis to compactifications based on genuinely inter-

acting N = 2 SCFT.

For simplicity one can consider Gepner models first. In this case the worldsheet su-

percurrent is given by

G =
∑

i

[ψPF
i e

i
q

3
ci

Hi
+ ψPF,†

i e
−i

q
3
ci

Hi
] . (6.4)

There are two classes of boundary conditions preserving the diagonal N = 2 SCA commonly

called of A and B type. A-type boundary conditions imply

[ψPF
i − iηψ̄PF,†

i ]|b〉A = 0 , [e
i
q

3
ci

Hi − e
−i

q
3
ci

H̄i
]|b〉A = 0 (6.5)

and correspond to D-branes wrapping middle homology cycles (i.e. Special Lagrangian

submanifolds) or generalized bound-states thereof.

B-type boundary conditions imply

[ψPF
i − iηψ̄PF

i ]|b〉B = 0 , [e
i
q

3
ci

Hi − e
i
q

3
ci

H̄i
]|b〉B = 0 (6.6)

and correspond to D-branes wrapping even-dimensional homology cycles (i.e. complex

submanifolds) or generalizations thereof.

One can envisage the possibility of imposing symmetry breaking boundary conditions

such as

[ψPF
i − iηe2πiνi

bψ̄PF,†
i ]|b〉Ã = 0 , [e

i
q

3
ci

Hi − e−2πiνi
be

−i
q

3
ci

H̄i
]|b〉Ã = 0 (6.7)

or

[ψPF
i − iηe2πiνi

bψ̄PF
i ]|b〉B̃ = 0 , [e

i
q

3
ci

Hi − e−2πiνi
be

i
q

3
ci

H̄i
]|b〉B̃ = 0 (6.8)

that should naturally correspond to D-branes wrapping submanifolds with non trivial mag-

netic fluxes and thus would deserve the name of ‘coisotropic’ D-branes in this context.

More pragmatically the boundary conditions combine a shift in the U(1) charge lattice

with a compensating ‘rotation’ of the complex parafermions so as to preserve the diagonal

N = 2 SCA. In cases where several factors are isomorphic (i.e. have the same k) additional
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‘permutations’ are possible in the boundary conditions leading to what have been called

‘permutation’ branes. The open string excitations of this more general class of D-branes

belong to twisted representations of N = 2 SCA that are known to exist for any real values

of νi
b. Spacetime supersymmetry imposes further constraints [117, 115]. A detailed study of

this class of branes is deferred to future work. Suffice it to say that including this new class

of branes enormously widens the possibilities of accomodating interesting chiral models in

Type I Gepner models.

For the time being let us check the validity of the above interpretation for the phe-

nomenologically uninteresting case of D = 8, i.e. to T2 compactifications [118, 119], where

a precise dictionary exist between the standard bosonic and fermionic coordinates X,ψ

and parafermions ψPF and free boson H. Indeed for the (1, 1, 1) model c = 1 + 1 + 1 = 3

and H =
∑

i Hi/
√

3 and

Ψ = eiH , ∂Z =
1√
3

∑

i

ei(H−
√

3Hi) (6.9)

while for the (2, 2, 0) model H =
∑

i Hi/
√

2

Ψ = eiH , ∂Z =
1√
2

∑

i

ψie
i(H−2Hi) . (6.10)

Finally, for the (4, 1, 0) model H = (
√

2H1 + H2)/
√

3

Ψ = eiH , ∂Z =
1√
2

[
Ψ̂3/4e

i(H−
q

2
3
H1)

+ ei(H−
√

3H2)

]
. (6.11)

Switching on a non vanishing νi
b 6= 0 is tantamount to turning on a magnetic field or,

equivalently after T-duality, rotating the brane wrt the fundamental cell of the T2.

7. Concluding remarks

We have derived very compact and elegant formulae that allow one to determine the tree

level gauge couplings and the one-loop thresholds in Type I or similar compactifications

based on genuinely interacting N = 2 SCA, such as Gepner models but not only. We have

then given some explicit example for the non-abelian factors in the Chan-Paton gauge

group. In view of [99, 100] the analysis of anomalous U(1) factors may reserve for us new

interesting possibilities. Moreover the computation of four vector boson scattering ampli-

tudes at one-loop seems at reach, since the threshold encode the structure called E . The

other irreducible structure F require some more work.The analysis might be significantly

simplified resorting to the hybrid formalism proposed by Berkovits.5

We have then briefly discussed how to generalize the standard boundary conditions so

as to describe magnetized aka coisotropic D-branes. This new class of branes may open

new paths not only to the construction of viable Type I models but also to the generation

of non-perturbative effects, i.e. D-brane instantons, mediated by magnetized or coisotropic

5M.B. would like to thank Nathan Berkovits for clarifying discussions on this issue.
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ED-branes. It is in fact more than natural to expect that ED-branes wrapping the same

cycle as a given stack of branes, including magnetization, are equivalent to standard gauge

instantons for the resulting effective theory, while all other ED-branes generate stringy non

perturbative phenomena.

Clearly before even contemplating stringy instanton effects in these backgrounds one

should reliably compute tree level Yukawas and Kähler potential for the open string ex-

citations. We hope to report on these issues soon although the perspectives of making

reasonable predictions for the Cabibbo angle in this context are much weaker than for the

Weinberg angle. It would also be interesting to study models with large extra dimensions

á la Aldazabal et al [120, 121]or even non-susy models with supersymmetric partition func-

tions. As mentioned in the introduction the final goal would be to stabilize all moduli

and break susy in a controllable way. This may not forgo understanding better, from a

worldsheet vantage point the effects of fluxes and gaugings.
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A. The k = 3, N = 2 minimal model

In order to work out the thresholds for the example of the quintic described by the (k = 3)5

Gepner models it is helpful to decompose the primaries of the k = 3 minimal model

(c = 9/5) into a U(1) model (c = 1) combined with the 3 state Potts model, (c = 4/5).

The primaries of the U(1) model are Vq = exp(iq
√

5/3H) with h = 5q2/6, where q is the

charge. In the NS sector q = n/5 = 2n/10, while in the R sector q = (2n + 1)/10. The

primaries of the 3 state Potts model (which is actually a quotient of the c = 4/5 minimal

model wrt a spin 3 W symmetry) are six: I identity with h = 0, ε energy with h = 2/5

(real), σ and σ∗ spins with h = 1/15, ρ and ρ∗ parafermions with h = 2/3 = (k − 1)/k.

Indeed the S-modular transformation reflects the Z3 symmetry S = S3 ⊗ S2 where S3 is

the S-matrix of SU(3) at level 1 and

S2 =
2√
5

(
s1 s2

s2 −s1

)
(A.1)
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sector (l, m, s) h q Field Comment

NS (0, 0, 0) 0 0 V0I Identity

R (1,−2,−1) 3/40 +1/10 V+1/10σ RGS

NS (2, 0, 0) 2/5 0 V0ε

R (3,−2,−1) 27/40 +1/10 V+1/10ρ

NS (1, +1, 0) 1/10 +1/5 V+1/5σ
∗ CPO

R (0,−1,−1) 3/40 +3/10 V+3/10I RGS

NS (3, +1, 0) 7/10 +1/5 V+1/5ρ
∗

R (2,−1,−1) 19/40 +3/10 V+3/10ε

NS (2, +2, 0) 1/5 +2/5 V+2/5σ CPO

R (1, 0,−1) 11/40 +5/10 V+5/10σ
∗

NS (3, +3, 2) 4/5 +2/5 V+2/5ρ

R (3, 0,−1) 7/8 +5/10 V+5/10ρ
∗

NS (3, +3, 0) 3/10 +3/5 V+3/5I CPO

R (2, +1,−1) 19/40 +7/10 V+7/10σ

NS (3, +1, 0) 7/10 +3/5 V+3/5ε

R (2, +1,−3) 43/40 +7/10 V+7/10ρ

NS (1, +1, 2) 3/5 +4/5 V+4/5σ
∗

R (3, +2,−1) 27/40 +9/10 V+9/10I

NS (3, +1,−2) 6/5 +4/5 V+4/5ρ
∗

R (1,−2, +3) 43/40 +9/10 V+9/10ε +9/10 = -11/10(mod2)

NS (0, 0, 2) 3/2 1 V+1R + V−1ρ
∗ G (ws susy)

NS (2, 0, 2) 9/10 1 V+1σ + V−1σ
∗

Table 1: The sectors of the (k = 3)5 model.

where sn = sin(nπ/5). The resulting fusion rules also reflect this symmetry. In particular,

I, ρ and ρ∗ are simple currents. The only non obvious ones are

ρ × σ = σ∗ , ρ × ε = σ , ρ × σ∗ = ε (A.2)

and their conjugate, while ε, σ and σ∗ have non abelian (‘minimal’ in a sense) fusion rules

ε × ε = σ × σ∗ = I + ε (A.3)

as well as

ε × σ = σ∗ × σ∗ = ρ + σ (A.4)

and its conjugate.

In the Table we list the field identifications (barring charge conjugates).
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[59] M. Cvetič and I. Papadimitriou, Conformal field theory couplings for intersecting D-branes

on orientifolds, Phys. Rev. D 68 (2003) 046001 [hep-th/0303083] [Erratum ibid. 70 (2004)

029903].
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